\Orchestrating a brighter world

Low Power Consumption Optical Amplification Using Multicore Erbium Doped Fiber Amplifiers

Emmanuel Le Taillandier de Gabory

NEC Corporation System Platform Research Laboratories

2018/06/11 IEEE Photonics society, French Chapter

© NEC Corporation 2018

IEEE Photonics society, French Chapter 2018/06/11

Outline

- Introduction
- Design of high capacity SDM systems
- Low power consumption MC-EDFA
- Characteristics of amplified SDM systems
- Perspective of SDM systems
- Summary

Introduction

The author wishes to thanks his colleagues K. Matsumoto, H. Takeshita, S. Yanagimachi and M. Arikawa who greatly contributed to most of the presented results.

Space-Division Multiplexing

D.J. Richardson et al., Nature Photonics, 7, 354-362 (2013)

- Uninterrupted traffic growth of internet trafficOptical transmission system capacity
 - Digital coherent technology with standard fiber
 - Around 100Tb/s demonstrated [D. Qian et al., OFC2011, PDPB5]

A promising approach to overcome the current limit: **Space-division Multiplexing**

Space-Division multiplexing and its benefits

Increase the number of fibers?

• Fabrication with conventional technique

·La

- Large foot print
 - (1) High transport cost
 - (2) High laying cost

Need more motivation...

Use new fiber?

- Using several cores of a multicore fiber
- Using several modes of a multimode fiber

Potential benefits of SDM

- Ultra-high capacity fiber link
- long-haul fiber link possible
- Integration
- Scalability
- High efficiency amplification
- Other

Future fibers?

\Orchestrating a brighter world

Space-Division Multiplexing with new fibers

S. Inao et al., OFC'79, WB1

WB1 Fig. 3. Cross-sectional photograph of 7-core fiber: $d = 23 \mu m$, $D = 150 \mu m$, $t = 5 \mu m$, $\Delta = 1\%$.

T. Takahashi et al., ECOC 2012 Th3C3

Year	1979	2012
Maker	Furukawa	Furukawa
N Cores	7	7
Clad Diameter [mm]	150	200
Core pitch [mm]	around 30?	56
Loss [dB/km]	3 (@0.850mm)	<0.2 (@1.550mm)
XT	-41dB/480m (-38dB/km)	-50dB/55km (-67dB/km)

NEC

SDM transmission

Design of high capacity SDM systems

- Different flavors
- XT compensation

Fibers for high capacity SDM systems

Use of SDM to overpass the capacity limit of SMF

Crosstalk of -30dB/100km

10

 The proportion of proportion of distance limit due to XT limit is almost independent of modulation format

Crosstalk of -20dB/100km

11

QPSK 16QAM 64QAM 256QAM 1024QAM

- MIMO is efficient on short distance transmission.
- At long distance transmission, filter memory is the limiting factor.

Coefficient selection with MIMO FDE

Coefficients Selection

XT Compensation with MIMO-FDE

- MIMO coefficient selection and constraint FDE are efficient to compensate XT
- Unconstraint MIMO has difficulties for coefficient convergence

(iii) Core 1-2 w/ XTE & 0.5ns

Evaluation of XT compensation with double loop configuration

Compensation of XT with MIMO-FDE

Signal management is a requirement for XT compensation.

\Orchestrating a brighter world

Future SDM systems from a fiber perspective

MIMO-less approach

- Short distance
- Long distance with ultralow XT or XT management
- Early introduction

MIMO approach

- Fiber design becomes key
 - Relation between DSP and fiber
 - MGD / skew limit

16

Coupled core may be an interesting approach

Low power consumption MC-EDFA

- Power consumption of amplification
- Pumping schemes for MC-EDFA
- Control of hybrid pumping scheme MC-EDFA

Part of these research results was obtained within "Research and Development of Space-Division Multiplexing Photonic Node", commissioned research of the National Institute of Information and Communications Technology (NICT), Japan

Power consumption of optical amplifiers

R. S. Tucker, J. Sel. Top. Quantum Electron., Vol.17, No.2, Mar 2011

- Power consumption networks increase with exponential growth of capacity
- Limitation of electrical power consumption
- Power consumption is key in power limited environment
 - Submarine cables, remote location

As a traffic continues to increase...

- Electronic devices: further reduction of power consumption by CMOS process
- - Optical devices: power consumption continue to increase
- and heat accumulating environment
 - Poor environment control, high integration

For amplification, pump LDs are dominant

Pumping methods for MC-EDFA

Hybrid pumping for power reduction

Hybrid pumping structure

Individual core pumping compensate gain variability and power of clad pumping

E. Le Taillandier de Gabory et al., OFC 2017 Th.1.C.1 (2017)

Characteristics of pump LDs

	Clad pump	Core pump	
Mode	Multi-mode	Single-mode	
Pump power	High (-30W)	Low (-5W)	
λ	980 nm	1480 nm	
Direction	Forward	Backward	
# of LD	1	# of cores	
Cooler	Without	With	
Efficient at	 High power Many core used High temp. 	 Low power Few core used Low temp. 	

Reduction of power consumption by controlling pumping ratio

Control depending on used cores

- (1) Gradually increased clad pumping
- (2) Correspondingly reduced core pumping

(1) Compared with conventional core pumping

(2) Effect observed above 4 cores are used

Successfully reduced power consumption of up to 16.5 %

Control depending on temperature

(2) Low temp.; Increase core pumping

Correspondingly decrease clad pumping

E. Le Taillandier de Gabory et al., OFC 2017 Th.1.C.1 (2017)

Compared with conventional core pump optimized at below 40 and 75 °C

Significant reduction of power consumption of >30%

Improvement of hybrid pumping scheme

Individually core pumped

Hybrid pumping

Number of LDs = Number of cores

Increment of cores mean increase of ..

Power consumption has been successfully reduced ..

Number of LDs = Number of cores

Hybrid pumping is truly optimized scheme ?

Approach to reduce the LD for core pumping

Hybrid pumping

(2)Foot print (3)Cost

Hybrid + [†]Core share pumping

- Reduced the LD using optical coupler
- Continuing as-presented hybrid control

Low foot print and low cost expected with low power consumption

24

Evaluation of the reduction of power consumption

• Under the number of lighten core odd, unused pump power generated

Not optimal over lifetime of the amplifier

Previous results used a priori knowledge of the MC-EDFA structure.

• Cores sharing a lighten pump are used in priority.

Best case:

What would happen without a priori knowledge of the MC-EDFA structure?

- Plausible with no management of the SDM channels or with open line systems.
- Worst case:

Power consumption under the worst case

• We achieved reduction of power consumption up to 23.2%

Without knowledge of core assignment, efficiency is low

Approach to solve the problem

Hybrid + Core shared pumping

Hybrid + Variable shared pumping

• Optical coupler has been changed to **tunable optical coupler**

Core pumping power become variable by tuning the optical coupler

Evaluation of the reduction of power consumption

"Hybrid + Core shared pumping" and "Hybrid + Variable shared pumping"

E. Le Taillandier de Gabory et al., ECOC 2017 M.1.E.2 (2017)

Inconvenience of core share pumping is successfully overcome

Low foot print, low cost, and low power consumption achieved

Characteristics of amplified SDM systems

- Transmission experiments
- Signal assignment and path routing

Part of these research results was obtained within "Research and Development of Space-Division Multiplexing Photonic Node", commissioned research of the National Institute of Information and Communications Technology (NICT), Japan

Purpose of transmission experiment

Hybrid pumping structure

Characteristics of pump LDs

		Clad pump	Core pump
00 MC-EDF	Mode	Multi-mode	Single-mode
	Pump power	High (-30W)	Low (-5W)
	λ	980 nm	1480 nm
	Direction	Forward	Backward
	# of LD	1	# of cores
Control	Cooler	Without	With

 Hybrid pumping demonstrating pumping ratio control of LDs with different characteristics would change <u>noise figure</u> of amplifier

Influence on signal quality

Validation with transmission experiment

- 256Gb/s PM-16QAM
- 7 times through the amplifier

Pumping ratio has fixed to optimized values for the number of used cores of 1-7, respectively

NEC

Validation with transmission experiment

No significant degradation of the received Q value depending on the hybrid control
 Q variations of ±0.17dB are related to variations of transmitter

Hybrid pumping scheme can be used in transmission system

Influence of signal allocation on power consumption

Power consumption depends on signal allocation and selected pumping scheme

The most power efficient pumping scheme will depend on the signal allocation

34

Menu card of available pumping schemes

Pumping scheme	Acrony m	Use of core pumping	Use of clad pumping	Comments
Individual core pumping	ICP	Yes	No	Reference
Shared core pumping	SCP	Yes	No	With 3dB coupler
Variable shared core pumping	VSCP	Yes	No	With tunable coupler
Common cladding pumping	CCP	No	Yes	Need of core attenuation
Hybrid with individual core pumping	H-ICP	Yes	Yes	
Hybrid with shared core pumping	H-SCP	Yes	Yes	With 3dB coupler
Hybrid with variable shared core pumping	H-VSCP	Yes	Yes	With tunable coupler

35

Evaluation of optimal pumping scheme

Channel allocation on spatial superchannels of different sizes Simulation calibrated with MC-EDFA characteristics

Assumptions

- 112ch/core at maximum, 16 sub-carriers chunks
- -3dBm/subcarrier
- Spectrum equalized externally

Reduction of power consumption relative to individual core pumping

Path selection algorithm for low power consumption with cladding pumping

The selected optical path is **not always the shortest** optical path.

The number of optical carrier per core is minimized.

Minimum power consumption of MC-EDFA is achieved in each link.

The total power consumption of MC-EDFA in the network is minimized.

different from conventional methods

Simulation model for SDM network

Cladding Pumped MC-EDFA with Spatial Superchannels

- Cladding pumped MC-EDFA reduces power consumption of amplified optical link.
- Spatial superchannels and path routing algorithm reduces further power consumption.

Reduction of power consumption in SDM networks

39 % reduction by cladding pump 45 % reduction by proposed IA-LWB algorithm

Total p.c. = $\Sigma[{\Sigma(power consumption of MC-EDFA)}/link]$ Conventional algorithm (IA-SPF): reduction is NOT saturated. \rightarrow 16 or more cores-MCF is the best

Proposed algorithm (IA-LWB): reduction is saturated at 4s4w. → 4 cores-MCF is sufficient

Perspective of SDM systems

- High core count
- Other perspectives

Higher core count

Clad pumping become more efficient

Number of cores will continue to grow

ΣA_{core} / A_{clad}

- Increasing geometrical gain of clad pumping is expected
- Decoupling between number of cores of transmission fiber and amplifier fiber

• Geometrical performance increase

Hexagonal close-packed structure

Maximum pump power used in hybrid structure : 10W Maximum pump power under current technology: 70W

• Reported gain at higher number of cores is key

Core to core variation are a limiting factor

Core pumping for high core count

Promising hybrid pumping structure

• Number of LD for core pump is 1

• High linearity LD for core pump

Pump sharing techniques is beneficial at moderate pump power

Improvement of linearity of pump LD will be the key

Further power reduction expected

Improvement of cladding pumping

• Looking forward for future developments (ECOC 2018)

Summary

Summary

SDM technology enables high capacity system design

- With correct XT or MIMO design
- SDM enables **lower power consumption** system design with MC-EDFA
- Cladding pumping has high potential for power reduction of optical amplification
- Hybrid of cladding and core pumping is the most viable solution at current point
 - The proposed amplifier enables more than 23% reduction of power consumption compared to individual core pumping
 - Less than ±0.2dB variation of received Q after passing through the controlled amplifier
- Channel allocation and routing algorithm may contribute to power reduction in SDM systems
 - <u>Reduction of power consumption by 39%</u> in simulated SDM network using cladding pumped MC-EDFA
 - Additional reduction of power consumption by 45% with dedicated path routing algorithm

Part of these research results was obtained within "Research and Development of Space-Division Multiplexing Photonic Node", commissioned research of the National Institute of Information and Communications Technology (NICT), Japan

Orchestrating a brighter world

