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Radio and Optical Communications

Group in DCU

Ability to accurately characterize novel high speed
devices, and sub-systems including:

« Initial simulation/modeling of the optical and
optoelectronic devices

« Complete systems simulations to demonstrate device
performance

 Detailed characterization of optical and optoelectronic
devices

« Performance testing of novel devices & sub-systems in
coherent & direct detection testbed (56Gbaud PAM4,
33Gbaud 64QAM, 100G OFDM, etc.)
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Examples of Current Projects

* Applications of tunable laser diode in optical networks

» Generation, characterisation & optimisation of optical frequency combs
» Development of all-optical processing technologies for Th/s systems
 Design of hybrid radio/fibre systems for broadband access and 5G networks
» Development of advanced optical signal characterization techniques
 Design, realization & characterization of new lasers for THz emission

» Characterizations of novel single mode lasers for access networks

* Implementation of novel modulation formats for optical systems
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MOTIVATION

The Internet: enabled by photonics




Communications Before Photonics ?

First transatlantic telegraph cable (August

16, 1858) reduced communication time
between North America and Europe from
ten days to several hours ...

“the world read closing quotations from
Wall Street, learned the prices on the
Brussels grain market and the fact that
Congress had readmitted Tennessee into

the Union ...on same day”

1927 - Transatlantic telephone service became radio-based

1956 — First transatlantic telephone cable, carrying 36 telephone calls

TWO KEY OPTICAL/PHOTONIC INVENTIONS
1988 - First transatlantic fibre optic cable, carrying 40,000 telephone calls or 280 Megabit/s

2018 — MAREA Fibre Optic Cable (Microsoft/Facebook), 160 Terabits/s
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Key Inventions

LASER OPTICAL FIBRE

Charles Townes Theodore Maiman Charles Kao

The Nobel Prize in Phy5|cs 2009

"for groundbreaking achievements concerning the transmission of light in fibers
for optical communication, which have revolutionized the way we work, study,
interact, and live our daily lives “ --- CHARLES K. KAO 6
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Optical Fibres: Backbone of the Internet
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Continual Traffic Growth

Global IP traffic
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https://visual.ly/community/infographic/how/internet-real-time

Is Communication/Bandwidth important ?

Why it’s so tough to eradicate opium

DCU :



Growth in available download speeds
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* Growth in access rates driving requirement for higher speed core optical networks
e Core networks are based on Wavelength Division Multiplexing technology

* Only scalable broadband access solution is Fibre To The Home
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Wavelength Division Multiplexing (WDM)

* Sending multiple wavelength channels (colours) down single fibre

* [Initially using basic ON/OFF signalling (“1” Light on, “0” Light Off )

* Current Systems use both phase and amplitude modulation

DCU -



Evolution of WDM systems:

Data Rate per fibre in Core Network

Average download speeds (access
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Advanced modulation formats for

spectral efficient WDM links

+ Coherent Detection Dual Polarisation at 25 Gbaud
1 bit per symbol - 50 Gbit/s
2 bits per symbol - 100 Gbit/s
3 bits per symbol - 150 Gbit/s
4 bit per symbol - 200 Gbit/s

DCU .



Evolution of static WDM systems

- towards superchannels

Remove §0aBHzasEcing 100 Gb/s (200 Gb/s
With DP-16 QAM)

Avalilable Frequency
SepapeteiiCmnaiels
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What is a super-channel?

100G Line Card

100G Line Card

100G Line Card

100G Line Card

100G Line Card

100G Line Card

100G Line Card

100G Line Card

100G Line Card

100G Line Card

* Bulky
* Power hungry
* Does not scale operationally

DCU

All carriers are provisioned
In a single ogerational cycle...

Practical | LtineCard
to build

A super-channel implements
multiple carriers - ideally in a
single line card...

Superchannel is seen as a single unit of
capacity by the services that use it !!!

Difference between superchannel and
conventional WDM is channel separation
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The superchannel approach

Coherent WDM / All-Optical OFDM / Nyquist

" 50GHz

freed bandwidth!

[T T 1)

. . f
S50GHz

L> only possible with orthogonal subcarriers

DC U (optical frequency comb) 16




Superchannel developments at DCU

Studying superchannel
flexibility in terms of:

comb generation...

data rates &
modulation formats
Coherent/Direct Detection
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Generation of Optical Frequency Combs

3 main techniques

e Strongly driven electro-optic modulators to impose sidebands on
signal from a single-frequency continuous-wave laser

e Mode-locked laser to generate broadband frequency combs
(spectrum of a periodic pulse train from MLL consists of discrete
lines with an constant spacing equal to pulse repetition frequency)
e Gain-switching of laser diode

Generation of a frequency comb requires that periodicity
applies not only to the pulse envelopes, but to the whole
electric field of the pulses, including their optical phase

— Coherence between the pulses is required.

DCU -



Generation of Optical Frequency Combs

-- External Modulators

e Modulation of CW signal using two cascaded MZMs

e Only requires a single laser source

Signal ienerator

Polarisation
controller

DCU
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e 11 lines generated
e Constant 20 GHz spacing set by the RF signal generator

e 200 GHz bandwidth

e Flatness < 0.6 dB

e Side Mode Suppression Ratio > 13.5 dB 19



Quantum-Dash mode locked laser as comb source

* Gas source molecular beam epitaxy (GSMBE) on an S-doped (001)
InP substrate

* Active region composed of nine layers of InAs Q-Dashes separated
by InGaAsP barriers

* Free Spectral Range (FSR) — 82.8 GHz, 44.7 GHz 22.7 GHz and 10GHz

* F. Lelarge et al., J. Selec. T. Quant. Electronics (2007)
* R. Rosales et al., IEEE J. Selec. T. Quant. Electronics Vol. 17, 2011
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Optical Comb source using gain-switched laser

20 GHz

-20 |

RF synth _ 0
DC Bias | | JJU J
Current -60 A
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output 20 (c) 185 GHz
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—— -40
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e Direct modulation of high speed laser for comb generation

PHOTONICS

Relative Power [dB/20MHz]

T@ 1, 125 GHz |
-20 : i ‘ ] o

e Comb spacing variable using RF drive signal

e External injection reduces amplitude and phase noise on comb lines
eCan achieve tunable comb source using FP slave laser

21
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Flexible Terabit/s WDM Super-Channel using
gain switched comb source
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Vidak Vujicic et al., ‘Flexible Terabit/s Nyquist-WDM Superchannels with net SE > 7bit/s/Hz using a
Gain-Switched Comb Source’, Conference on Lasers and Electro-optics, (CLEO 2014), 2014.
Joerg Pfeifle et al., ‘Flexible Terabit/s Nyquist-WDM Super-Channels using a Gain-Switched Comb
Source’, Optics Express vol. 23, pp. 724-738, 2015
22
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Performance of flexible comb source in

Superchannel systems

» Aggregate bit rate 1.296 Tb/s

* Spectral efficiency 7.8 bit/s/Hz
 Among the highest globally reported values for spectral efficiency

achieved for 16QAM in terabit/s super-channels
* Flexible subchannel spacing, modulation format, number of channels, ..

18 GBd PDM-QPSK (©) 18 GBd PDM-16QAM

(@)
30k

40k

Power [dBm)]

e 135 7 9111315 B 1 35 7 9111315
Sub-channel number Sub-channel number
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Integrated Gain Switched Comb Source
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Photonic integrated comb source for

superchannels

* Monolithically integrated comb source and
demultiplexer

 Multiple coherent wavelengths on individual
outputs for modulation

* Reduced cost, footprint and power consumption
with increased spectral efficiency and stability

oue , D
Source Demux
5 | todata modulator

Wiaclength nml

|V|0n0|lthIC InP chip i + to data modulator

22
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Integrated comb source and 4 channel

demultiplexer
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Integrated comb source and demux in

Nyquist UDWDM
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Experiential setup of Nyquist UDWDM system utilizing the 4
de-mux outputs

12 GBd Nyquist-quadratue phase shift keying (BPSK) used
with 12.5 GHz FSR and 6GBd used with 6.25GHz FSR
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Integrated comb source and demux in

Nyquist UDWDM
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How to handle growth in demand for bandwidth

Better use of installed fibre in terms of
spectral and temporal usage

- Advanced modulation formats

- Reconfigurable optical networks
- Better use of available fibre

DCU v



Developments in Optical Networks
employing tuneable lasers

Fast reconfigurability allows bandwidth to be provisioned here/when it is

needed .... At th? same t‘i modulation formats are evI%Iving....
m .
Re

From this....
Re To this....

Laser Phase Noise becomes major issue both in static
DCU gnd switchina environments



Key Technology for reconfigurable networks:
Fast Switching Tuneable Lasers

DFB Array ECL MEMS DBR-type
(SG-DBR,
DSDBR, MG-
Y, SSG-DBR)

Company NeoPhotonic, Luna Lumentum, Vertilas

NTT.NEC Technology Oclaro,

(iolon) Finisar

Tunability (nm) 35 38 35~50 28
Switching time 1~10s <2ms <100ns 200ps ~ Ims
SMSR (dB) 40 ~ 50 > 40 > 40 >30
Linewidth 100-200 kHz < 2MHz < 5MHz >32MHz
Tuning Mechanism Thermal Mechanical Electrical Mechanical

Applications

v

Sparing, Provisioning

Reconfigurability &
restoration, protection

OBS and OPS

v v
v v

WSS



Main type of tunable laser:

DBR-type laser operation (SG-DBR)

FRONT
MIRROR

M EEEN

Reflectance
Optical Power

Wavelength (nm) Wavelength (nm)
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Phase noise characterization

Standard tunable laser; SGDBR device
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Phase noise and frequency variation of tunable

laser after switch

* Excess phase noise (1/f noise) from

4 ~ o2 110° SGDBR devices effects static
§0_1 coherent transmission systems
e
2] 200 150 200 250 05 e FOandtime vz.ar.ying. FO after switch
~ ¥ Time (ns) T effects the waiting time after a
éo ,_;.Zoom in = switch when data can be sent
2 :
107 3 e Standard Mth power frequency
-2 — offset estimation scheme would
) ] require ~200ns wait time
-4 © . ‘ ' ' ' 10°
0 50 100 150 200 250 300 * Inefficient use of network resources
Time (ns)

e Use double differential PSK

Walsh, Anthony John (2015) Optimising the efficiency of coherent optical packet

DC U switched networks. PhD thesis, DORAS repository, Dublin City University. 34



Move from DDQPSK to DD 2-level 8 PSK to increase
efficiency (instead of standard 16 QAM)

7 ,’F\. N * 2 level 8 PSK constellation can be
s JEDY - employed for double differential
R encoding/decoding
. T o~ * DD encoding at transmitter
C‘It/ DD decoding at receiver

* .
oy Switching signal 12.5 Gbaud #& ‘,f PC
e Switching L
FPGA - awe_| #€, ‘ee 5] OO0
SGDBR 100 kHz | \Ll \LQ ag‘ Coherent
- o - = OOO Receiver
Back | Phase | Gain | Front — QM Q oC
_L 3dB VOA |}
¢ Static —] | Scope |
I o]
EDFA BPF VOA OSNR measurement -E-

35
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Performance of DD 2 level 8PSK scheme at 12.5

Gbaud with SGDBR laser

-©-16-QAM with 0 GHz FO

5 16.0AM wih 3 GHz FO 10 e Optimise distance between

=8~ DD-two-level 8psk with 0 GHz FO

- wo-level 8psk wit z H H
e inner & outer ring

"""" REECITT = |
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10.3 . .
* Performance in static case
10 . .
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(c)
Ty 1w s 19z 21 U m = 2 % = = o "6 i 2 8 4 8 8 7 advantage over standard
R OSNR (dB) Frequency offset (GHz)
DSP
‘EO.Z 109
"ol ¢ Move to switching case
E e Time (ns) 10° i
g, .§Zoomin %
$. .~ 2 Time to reach FEC limit
_ reduced by 56% compared
-0.37 (a) —8— DD-two-level 8PSK (c) .
0 10 20 30 40 50 60 0 50 100 150 200 250 300 0 50 100 150 200 250 30606 Wlth Standard DSP

Time (us) Time (ns) Time (ns)

FAN LIU, YI LIN, ANTHONY J. WALSH, YONGLIN YU AND LIAM P. BARRY, “Doubly
differential star-16-QAM for fast wavelength switching coherent optical packet
DC U transceiver”, Optics Express, Vol. 26, No. 7 | 2 Apr 2018



Low linewidth tuneable lasers for more

spectrally efficient systems

* Optical systems moving from QPSK to 16 QAM to xxQAM °?

e Laser phase noise can limit performance

* Standard SGDBR devices with linewidth ~ Several MHz (OK for QPSK at 28 Gbd)
e Using thermal tuning with SGDBR and advanced structure to achieve < 300 kHz

e Different tunable devices may be suitable for lower linewidth

Phase tuning

wn
o
b
Nm ﬂx
Y
C
~+
©
C
~+

MRR tuning

Y. Fan et al., “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-
SizN, hybrid laser”, in Proc. Conference on Lasers and Electro-Optics, San Jose, USA, 2017 5
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Characterisation of widely tunable InP-Si;N,

hybrid laser

(a) 0 Wavelength (b) 10 SMS m, v - — v : .
: ol |
- ‘ \
2, A0 4
1:1 : 20 | ‘ ‘ 1
ﬁ 3o} 1
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E 40 | 1
2 [}
0 60
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-40 0 1 5
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Z 1m0 E 304l N £
ol = 2% mitial Mode 25 5
-120 E 20 203 =
130 : S 2 2
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0 1 2 3 4 5 6 7 8 9 10 5 0 toratores 1
Frequency (GHz) 06 04 02 0 02 04 06 =50 10 TS Cl80. 00 0 250 1908) 5358
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* Tunable over 60 nm using voltage (heating) of ring resonators

* SMSR in excess of 50 dB on all wavelengths

* RIN better than -130 dB/Hz

e Linewidth ~50kHz

. . y
DCU Switching time ~ microsecond



Performance of widely tunable InP-Si;N, hybrid

laser in coherent systems

(a)

BER

—e—Keysight N7711A ECL tunable laser
=& Thermal tunable micro-ring laser

DCU
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b Bt & L

20 2 24 26
OSNR (dBm)

X Pol BER-X=0.0003886

T -

Quadrature

Quadrature

Performance similar to ECL for 16QAM
12.5 Gbaud system

Can also obtain clear constellations at
32 and 64 QAM demonstrating
excellent phase noise
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Wavelength conversion using fast tunable

lasers for reconfigurable optical networks

Typical packet / burst switched network

* Route data through the Core Routers (CR)

Edge
Router
2

 Overcome wavelength contention

* Avoid electronic processing in the CR
* Use spare wavelength channel capacity

 Maximum efficiency of network resources

° 1 1 1 Edge
Packgts have information er-1coded in Rougter
amplitude and phase domain 1

40

DCU



DCU

Wavelength Conversion techniques

Wavelength Conversion
Avoid electrical processing in the CR

Requires optical nonlinearities (3" order)
« Cross- Gain and/or Cross Phase Modulation, Four-Wave
Mixing
« FWMs a coherent nonlinear process: amplitude and
phase preserving

Devices:

« Semiconductor Optical Amplifiers (SOA), Optical Fiber,
Nonlinear waveguides

Flexibility

 Tunability, Reconfiguration time

41



Wavelength Conversion using FWM

DCU

New wavelengths generated due to COHERENT scattering of
optical waves from the creation of a gain and/or index grating
arising from the 3" order nonlinear optical process.

E, o« Ep,Ep,Eq eXp{j[ (5, — 0p, + 5 )t ]}

Nondegenerate FWM — Pump P2 : anywhere within the system

l |
bandwidth! Single Pump bual Pump
Conversion Conversion
) 16-QAM Signal 63-\(\‘(\””’*‘7 Scatte,_ Sca’(.‘e‘ed ‘«**SCattered
SEE I S S 6‘3‘\ 'onn eO: . ?‘)«\Q Pump P
I P1 * ¥ P2
s ¥ ¥ B
Signal
g k ‘* » g > 2 —* * *
e 5 2 8 |prl—fs» E’Es  EEGE, E,E,Eq
4}4 2 0 2 4 - I l I
Frequency .



Wavelength Conversion using FWM

Electrical
Controller

_____________ Wavelength
Convertor J— i Outputl
i >
|
X . Output2
nable laser i —
:
|
|
AWG | |
T a—
- T ey Delay 1
|
2 1
SOA  I—signat— |
Cmanket NS T ) T (I Delay 2
Incoming packet >
! /
_________________________ — Optical
Buffer
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Experimental testbed
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Experimental Results

.2 T T T T T T
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Experimental Results

10" 150 10°" 150
(@) ,’ (b) ‘
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. Time-resoived BER for the reconfigurable wavelength convertor
as tunable SGDBR pump laser switches wavelength

« BER below FEC limit after ~20ns

« Average BER worse for one channel due to higher Iinewidth49n
DCU  SGDBR laser at this operating wavelength



Conclusions

e Continuing growth in demand placing strain on optical links

e Need enhanced efficiency in terms of spectral and temporal usage

e Optical Comb Sources can reduce power consumption & channel spacing

Develop superchannel systems based on direct/coherent detection

Electo-optic OFDM used with QD comb sources can achieve 4 Tb/s transmission
Use phase noise reduction to employ QD devices in coherent systems

Flexible comb sources based on gain-switched lasers to achieve Tb/s links

Integrated comb sources can reduce foot print

e Tunable lasers allow optical links to be reconfigured to meet demand

DCU -~

Employ advanced DSP to overcome FO issues after switching

Develop lower linewidth devices for higher order modulation formats

Integrate TL's with tuneable filters to develop novel switching fabrics 47
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